Product Information

Bi-directional Power Sensor

The patented design of the TASC Bi-directional power sensor (BPS) is the most precise measurement device of its type currently available with broadband capability. The performance of the device has been proven in many installations across various cellular and land mobile radio sites.

The BPS is a precision tool for measuring and monitoring forward and reflected power. The device provides highly accurate forward and reflected power measurements in real time with forward power levels up to 500 Watts average power regardless of the modulation scheme. The device can be connected to any existing radio system for immediate, reliable monitoring. The device is built utilizing a unique, patented, proprietary airline multi-section dual directional coupler with extremely low insertion loss and low passive intermodulation levels.

The BPS connects to the analog inputs of TASC's site monitoring devices (siteRSM, SPL, siteCOMMANDER). siteVIEW Enterprise 2.0/ SCCU/SPCU provide the GUI used to monitor and set the alarm points for the forward and reflected power levels. VSWR can be calculated very easily using the forward and reflected power values. By including an input qualifier such as PTT, power levels and alarms will only be reported when the radio is transmitting and an alarm condition is present.

Product Highlights & Benefits

Some of the unique features of the device are:

- insertion loss of less than 0.1 dB
- the power sensors are calibrated over a 35 dB dynamic range at 0.5 dB increments to ensure that the directivity of this novel coaxial structure is fully exploited
- reduced downtime through real-time, accurate forward and reflected power measurements
- simple integration into new or existing radio systems
- wide frequency range 40-2000MHz

	1	2	3	4	5	6	7		8	ALL
inable Eventa	5	9	u						4	
🚯 Range	0-25.0	• 0-25.0	V 💌 0-25.0	V v 0-25.0	V 💌 0-25.0V	/ 💌 0-25.0	/ 💌 0-5.00	V 💌 0-5.	00V 💌	
Sensor		v	7	v	~	~	UHF (41 💌 UHP	(41 💌	<u> </u>
Offset	0.00	0.00	0.00	0.00	0.00	0.00	Norma TA-RE	5-20V 0.25	5 🗄	
Input Qualifie	e	·	¥	· ···	· ···	·	VHF (30-15	-	
Units High Thresho	Volt	s Vo	lts Vo	Its Volt	ts Volt	s Vol	ts dB	in (dBm	
Units High Thresho Threshold	Volt old Set Po	s Vol	Its Vo	Its Volt	ts Volt	s Vol	ts dB	m (dBm	
Units High Thresho Threshold Local Output	Volt Id Set Po 11.0	s Vo iints 11.0 T	lts Vo	its Volt	ts Volt	s Vol	ts dB	m (dBm	1 ±
Units High Thresho Threshold Local Output Low Threshol	Volt Id Set Po 11.0 7	s Vol	its Vo	its Voli	ts Volt	s Vol	ts dB	m (dBm	
Units High Threshol Threshold Local Output Low Threshold	Volt Id Set Po 11.0 7 Id Set Po	s Vo ints 11.0 	Its Vo	Its Volt	ts Volt	s Vol	ts dB	m (31057/ 3145.3 314.3 3145.3	dBm	
Units High Threshold Local Output Low Threshold Threshold Local Output	Volt Id Set Po 11.0 7 Id Set Po 17.0	s Vo iints iints iints 4.0 	Its Vol	ts Volt	ts Volt	s Vol	ts dB	m (dBm	

It is important to know the strength of the radio signal in order to make sure the system is ready to perform when called upon. The BPS from TASC will be able to inform you if the antenna has been compromised by reporting back an alarm. Armed with this information, the appropriate action can be taken to remedy the problem.

Specifications

General					
Directivity:	> 22 dB				
Frequency Range:	40 – 2000 MHz				
Measurement Range:	2 – 500 Watts Average Power				
Insertion Loss:	< 0.1 dB				
Input VSWR:	1.12:1 Maximum				
Power Handling:	> 500 watts Average Power				
Passive Intermodulation:	<-160 dBc IM3 2 tones @43 dBm				
Power Requirements:	7 – 25 VDC @ 10 mA				
Measurement					
Power Accuracy:	+ / - 0.5 dB				
User Interface					
Hardware:	Linear Analog Output (0-2 VDC)				
Mechanical					
RF Connectors:	N type F-F				
Power/Output Connector:	2-3pin press lock. Analog Output, GND, VDC In				
Operating Temperature:	-40 to + 50 degrees C				
Humidity:	98% non-condensing				
Dimensions:	200mm X 90mm X 40mm (8″ x 3.5″ x 1.5″)				
Weight:	1.25 kg				
Housing Material:	Aluminum, iridite coating				

TASC

TASC Systems Inc. is continuously working to improve system performance and expand product capabilities. Specifications are subject to change without notice. NOTICE: Given the variety of factors that can affect the use and performance of a TASC Systems Product (the "Product"), it is essential that User evaluate the TASC Systems Product and software to determine whether it is suitable for User's particular purpose and suitable for User's method of application. TASC Systems' statements, engineering/technical information, and recommendations are provided for User's convenience. TASC Systems products and software are not specifically designed for use in "life support" applications. TASC Systems products and software should not be used in such applications without TASC Systems' express written consent.

9415 202 Street Langley BC Canada V1M 4B5

T: 604-455-2000 F: 604-888-2712 sales@tascsystems.com www.tascsystems.com